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Abstract 
This paper investigates portfolio selection in the presence of transaction costs and ambiguity 
about return predictability. By distinguishing between ambiguity aversion to returns and to return 
predictors, we derive the optimal dynamic trading rule in closed form within the framework of 
Gârleanu and Pedersen (2013), using the robust optimization method. We characterize its 
properties and the unique mechanism through which ambiguity aversion impacts the optimal 
robust strategy. In addition to the two trading principles documented in Gârleanu and Pedersen 
(2013), our model further implies that the robust strategy is to aim for a low expected loss. 
Ambiguity-averse investors trade toward an aim portfolio that gives less weight to highly volatile 
return-predicting factors, and loads less on the securities that have large and costly positions in 
the existing portfolio. Using data on various commodity futures, we show that the robust strategy 
outperforms the corresponding non-robust strategy in out-of-sample tests.  
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1. Introduction 

Portfolio optimization depends crucially on the predicted returns of individual securities; thus, 

the resulting portfolio may deliver poor out-of-sample performance due to estimation errors in 

returns. For example, if an asset return is overestimated, then the resulting upward-biased 

position in this asset not only lowers the overall portfolio return but also entails unwarranted 

transaction costs. Importantly, subsequent adjustments to this biased position may lead to 

significant turnover and induce further transaction costs. The effect of estimation errors is 

particularly pronounced for highly frequently-rebalanced dynamic trading strategies, such as 

momentum and contrarian strategies.  

Estimation errors in returns arise, because the model used to predict returns might be 

misspecified and model parameters have to be estimated based on limited available information. 

In other words, modelling data-generating processes for returns and their predictors must allow 

for model and parameter ambiguity or uncertainty, as the complete distributions of returns and 

return-predicting variables are unknown to investors due to imperfect information (Epstein and 

Wang, 1994; Hansen and Sargent, 2001). Given the significant impact of estimation errors on 

portfolio weights and portfolio performance, there is evidence that investors are averse rather 

than neutral to ambiguity (Hansen and Sargent, 2001; Garlappi et al., 2007; Jeong et al., 2015).2 

It is important for active investors to factor ambiguity aversion into the portfolio optimization 

procedure.  

One method adopted in the literature to deal with ambiguity in portfolio optimization is the 

Bayesian approach (Black and Litterman, 1992; Barberis, 2000; Pástor and Stambaugh, 2012). 

Under this approach, the predictive distribution of asset returns is recovered by combining the 

                                                            
2  Conceptually, ambiguity aversion is different from risk aversion defined in Markowitz (1952) where the 
probability of returns is known to investors. 
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pre-specified prior over the parameters with observations from the data. However, this approach 

considers only a single prior (Garlappi et al., 2007), and may not be able to produce a stable 

optimal portfolio when the number of assets is large. The other method to deal with parameter 

ambiguity is robust optimization, which provides robust decisions in the context of limited 

distribution information. This approach typically defines a set of distributions that are assumed to 

include the true distribution of parameters, and then solves for the optimal portfolio based on the 

worst-case returns that are recovered from the distributions in this set (Epstein and Wang, 1994; 

Chen and Epstein, 2002; Anderson et al., 2003).  

Building on the non-robust framework of Gârleanu and Pedersen (2013) (henceforth, GP), 

Glasserman and Xu (2013) (henceforth, GX) develop a dynamic portfolio control rule that is 

robust to model and parameter ambiguity. By acknowledging ambiguity in the estimated model, 

GX find that the robust trading rules guard against ambiguity by trading less aggressively on 

signals from return predictors, and can significantly improve performance in out-of-sample tests 

on historical data. GX distinguish between ambiguity aversion and risk aversion, and document 

their different effects on the optimal strategy. However, it is unclear how and why ambiguity 

aversion and risk aversion differ in portfolio selection.  

Adopting GX’s robust optimization method, this paper investigates portfolio selection in the 

presence of ambiguity aversion within the framework of GP. We extend GX’s model by further 

distinguishing between ambiguity aversion to returns and ambiguity aversion to return predictors. 

Based on Radon-Nikodym theorem, we obtain the explicit forms of the constraints on these two 

types of ambiguity aversion. Thus, we can separately model ambiguity aversion to returns and to 

return predictors, and clarify their different effects on the optimal robust strategy. We derive the 
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optimal robust portfolio in closed form, and characterize the properties of the robust trading rules 

as well as the unique mechanism through which ambiguity aversion impacts the robust strategy.  

Our optimal trading strategy gives rise to two principles that are similar to those documented 

in GP. First, due to transaction costs, the optimal strategy is to trade partially toward an aim 

portfolio that minimizes the risk for a given level of return in the whole trading period. However, 

in our model, the trading rate depends not only on transaction costs and risk aversion, but also on 

ambiguity aversion. Being ambiguity averse, investors trade faster toward the aim portfolio.  

Second, the optimal strategy is to aim in front of the optimal portfolio derived from 

Markowitz’s (1952) mean-variance model, implying that the aim portfolio is a weighted average 

of the current Markowitz portfolio and the portfolio with the highest risk-, ambiguity-, and costs-

adjusted return in all future periods. However, in the presence of ambiguity aversion, this future 

portfolio is no longer simply the expected future aim portfolio as documented in GP. Rather, it is 

a combination of the expected future aim portfolio and the current optimal portfolio.  

Importantly, our model gives rise to a third principle that is not present in GP’s model, 

stating that the optimal strategy is also to aim for a low expected loss. Specifically, the aim 

portfolio loads less on the securities with highly volatile predictors as well as those with large 

and costly positions in the existing portfolio. Intuitively, highly volatile predictors are more 

likely to result in large estimation errors in a security’s returns, leading to a greatly biased 

position in the security. There is potential for great losses to arise from these biased positions of 

the resulting portfolio, particularly when the positions and their associated transaction costs are 

large. This provides a clear economic interpretation for the role that ambiguity aversion plays in 

portfolio selection. 
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Using data on commodity futures, we illustrate that the robust strategy indeed outperforms 

the non-robust strategy in out-of-sample tests. Additionally, the improvement in performance is 

particularly pronounced when transaction costs and the level of predictor variability are high. We 

show that as a result of mitigating the effect of ambiguity, the robust portfolio has smaller but 

more stable positions than the corresponding non-robust portfolio. Meanwhile, simply scaling 

down the positions of the non-robust portfolio is not able to achieve the effect of ambiguity 

aversion on the optimal portfolio choice. 

Our research contributes to the literature on portfolio selection and asset pricing with 

ambiguity aversion in three respects. First, it complements the literature on ambiguity aversion 

and dynamic asset allocation decisions. Maenhout (2004) considers a dynamic portfolio problem 

of an investor who is averse to model ambiguity in addition to market risk, and seeks robust 

decisions within the framework of Anderson et al. (2003). He finds that ambiguity aversion 

dramatically decreases the optimal share of the portfolio allocated to equities as a result of the 

high risk premium demanded by ambiguity-averse investors. Garlappi et al. (2007) develop a 

model with multiple priors and ambiguity aversion, and find that the portfolios delivered by their 

model tend to over-weight safe assets in the optimal allocations. Branger et al. (2013) analyze 

the optimal stock-bond portfolio under both learning and ambiguity aversion, and find that both 

learning and ambiguity aversion impact the size of the stock holdings and also induces some 

additional hedging demand for the uncertainty due to learning and ambiguity aversion.  

Previous studies generally confirm Chen and Epstein’s (2002) conjecture that ambiguity 

aversion and risk aversion are substitutes for each other. By distinguishing between ambiguity 

aversion to returns and ambiguity aversion to return predictors, our model shows that while 

return ambiguity aversion and risk aversion impact the robust portfolio in the same fashion, the 
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impacts of predictor ambiguity aversion and risk aversion differ. If there is solely ambiguity 

aversion to returns, our results are largely similar to those of GP’s model with a higher degree of 

risk aversion. Thus, ambiguity aversion and risk aversion are not substitutes for each other due to 

the presence of return predictor ambiguity aversion. 

Second, this paper contributes to the literature by analyzing the unique mechanisms through 

which ambiguity aversion helps improve the performance of the robust trading strategy. While 

previous studies (Garlappi et al., 2007; DeMiguel and Nogales, 2009; Glasserman and Xu, 2013) 

document the superior performance of robust portfolios, the key drivers of the superior 

performance are not theoretically analyzed. In contrast, we examine the roles of factor variability 

and transaction costs in shaping ambiguity-averse investors’ dynamic trading behavior. In 

particular, our model shows that investors prefer assets with low factor variability, as estimation 

uncertainty is directly associated with the variability of return-predicting factors. We 

demonstrate that the aim portfolio loads less on the assets with large and costly positions in the 

existing portfolio, in an effort to reduce the potential loss due to estimation errors. Our research 

provides economic interpretations for investors’ trading behavior with ambiguity aversion, and 

clearly explains why the robust strategy outperforms the non-robust strategy in out-of-sample 

tests.  

Finally, our analysis provides insight into asset pricing with ambiguity aversion. Previous 

studies show both theoretically and empirically that ambiguity aversion, in addition to risk, 

affects optimal portfolio choices and, ultimately, equilibrium asset prices (Anderson et al., 2003; 

Maenhout, 2004); Epstein and Schneider, 2008; Jeong et al., 2015). One underlying assumption 

of these studies is that risk is the channel through which ambiguity aversion impacts asset pricing. 

For example, Jeong et al. (2015) consider asset pricing models with stochastic differential utility 
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incorporating ambiguity aversion, and find that models with ambiguity aversion have lower 

relative risk aversion than models that ignore ambiguity aversion. On the other hand, Anderson 

et al. (2009) show that ambiguity seems to be different from risk and seems to have a different 

effect on returns than does risk. Our analysis further demonstrates how the ambiguity-return 

relationship and risk-return relationship differ, and implies that the ambiguity-return relationship 

hinges on both the variability of return predictors and transaction costs. For a given level of 

ambiguity aversion, high predictor variability and transaction costs are associated with high 

ambiguity premium.  

The remainder of this paper is organized as follows. Section 2 presents the model and 

characterizes the optimal robust trading strategy. Section 3 analyzes the properties of the optimal 

robust strategy and illustrates its trading principles. Section 4 provides a numerical analysis, 

while Section 5 concludes the paper.  

2. Model and optimal trading strategy 

In this section, we first review GP’s dynamic model. Then, following GX, we incorporate 

ambiguity aversion into the model by allowing estimation errors in both return and return 

predictor dynamics. Finally, we derive the optimal robust trading strategy, using the robust 

optimization approach.    

2.1. The model with no ambiguity  

We consider an investor who has access to S securities traded at discrete time {0,1,2, }t∈  . 

The probability space is ( , ,{ }, )tF F PΩ , where Ω is the sample space, { }tF  is a filtration, and P is 
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the real probability measure. The securities’ rates of return from time t to t + 1 in excess of the 

risk-free rate are indicated by an S-column return vector 1tr +  (henceforth, returns) given by:3 

1 1t t tr Bf u+ += + ,                (1) 

where tf  is a K-column vector of return predictors, and B is an S × K matrix of factor loadings. 

 ,,,, 21 tuuu are i.i.d random vectors, each of which follows a multivariate normal distribution 

with mean zero and covariance matrix Σu. 

Equation (1) implies the investor is able to forecast securities’ returns 1tr + , based on the 

available information tf  at time t, whereas B  represents the influence of tf  on the predicted 

returns. Further, tf  is assumed to evolve according to the following mean-reverting process: 

1 1t t tf f v+ += Φ + ,                (2)  

where Φ is a K × K matrix of mean-reversion coefficients for the predictors, satisfying Φ > 0 as 

well as 0I −Φ >  to ensure a stationary process. 4 1 2, ,v v   are the i.i.d shocks affecting the 

predictors, each of which is assumed to follow a multivariate normal distribution with mean zero 

and covariance matrix Σv. In addition, we assume that tv  is independent of tu  at any time t. Thus, 

 







Σ

Σ
=

v

u
tt vuCov

     0
0   

),( , t ∀ . 

Let tx  denote the vector of shares of the securities invested in a portfolio at time t. 

Rebalancing the portfolio holdings from 1tx −  to tx  incurs transaction costs. Following the 

literature, we assume that the transaction cost associated with this trading is given by: 

                                                            
3 A security’s return is defined as rt+1 = (pt+1 – pt)/pt – rf, where pt and pt+1 are the security’s prices at time t and t+1, 
respectively, and rf  is the risk-free rate for the period from time t to t+1. If the security is a share of stock that pays 
dividends, then pt is the actual price at time t, and pt+1 is the actual price at time t +1 plus the total cash dividends 
from time t to t+1. 
4 I represents the identity matrix. Φ > 0 means that matrix Φ is positive definite. 
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1
2

T
t t tTC x x= ∆ Λ∆ ,                (3)  

where 1t t tx x x −∆ = − , and Λ is the cost matrix, which is symmetric and positive definite. It means 

that a transaction of tx∆  shares leads to a change in the average price by / 2txΛ∆ , yielding a 

total transaction cost of 1
2

T
t tx x∆ Λ∆ . This cost specification is consistent with that specified in GP 

and GX, and is motivated partly by tractability.  

In GP’s model, the investor selects the dynamic trading strategy tx  ( 0,1, 2,t =  ) to 

maximize the present value of all future risk-adjusted returns, net of transaction costs: 

0 1

1
1

0 1, ,
max

2 2
t T T T

t t t u t t tx x t
E x r x x x xγ ρρ

−
+

+

   − Σ − ∆ Λ∆  
   
∑


,        (4) 

        subject to 1 1t t tr Bf u+ += + , 

                       1 1t t tf f v+ += Φ + , 

where 0 0x∆ = , ( )0,1ρ ∈  is the discount factor, and 0γ >  measures the investor’s risk aversion. 

Problem (4) is considered a guide to select sensible strategies rather than a precise representation 

of an investor’s preference.  

2.2. The model in the presence of ambiguity aversion  

Now, we incorporate ambiguity aversion into GP’s model. Assume that tF  represents the 

information that is known by investors at time t. Following GX, we assume that the estimation 

errors in returns, denoted by , 1u te + , and the estimation errors in return-predicting factors, denoted 

by , 1v te + , can be written as follows: 

, 1 1 1 1
ˆ ( ) ( ) ( )u t t t t t t t t te Bf Bf E r E r E u+ + + += − = − =  ,          (5) 
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, 1 1 1 1
ˆ ( ) ( ) ( )v t t t t t t t t te f f E f E f E v+ + + += Φ −Φ = − =  ,          (6) 

where B̂  and Φ̂  represent the estimates of B and Φ, respectively. ( )tE ⋅  is the conditional 

expectation operator with respect to the probability measure tP  that is induced by tF . 

Equations (5) and (6) imply that the underlying reason for estimation errors is the limited 

information about the distributions driving returns and return predictors. To illustrate this point, 

we take Equation (5) as an example. Since a partial sample rather than the full sample is used 

when regressing the return of a security on the predictors f, the estimated coefficients B̂  in the 

regression are likely biased. Thus, the predicted return 1 1
ˆ( ) ( )t t t t t tE r Bf E u Bf+ += + =   based on these 

biased loadings can deviate greatly from its true value 1( )t t tE r Bf+ = , and their difference 

measures the estimation error 1( )t tE u +
 . Alternatively, we can interpret return predictors as 

various indicators for assessing the expected return of a security. Given limited knowledge about 

the market, investors are not able to accurately evaluate each indicator’s ability to predict returns, 

and thus, their assessment is only an approximation of reality. Note that the estimation errors 

defined in Equations (5) and (6) can arise from misspecification in models or in the data-

generating processes. 

Next, we constrain the size of estimation errors to reflect investors’ aversion to ambiguity in 

our model. To this end, we constrain the difference between the two probability measures tP   

and tP , as this in turn implies that we constrain the difference between 1( )t tE r +
  and 1( )t tE r +  as 

well as the difference between 1( )t tE f +
  and 1( )t tE f + . By Girsanov’s theorem, there exists zt such 

that both 1 1( ) ( )t t t t tE u E z u
+ +

=  and 1 1( ) ( )t t t t tE v E z v
+ +

=  hold, where tz  is the Radon-Nikodym 

derivative of tP  with respect to tP , or t t tz dP dP=  .  Following Hansen and Sargent (2001) and 
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Anderson et al. (2003), we constrain the difference between the probability measures by making 

the relative entropy of the change of measures satisfy ( log )t t tE z z η< , where η  is a constant.  

As ut and vt are both assumed to be normally distributed, according to the change of measure 

theory, we can prove that the following lemma holds true:5 

Lemma 1: At any time t , tz  has a unique form: 

1 1
, 1 1 , 1 , 1

,

1exp
2

T T
t i t i t i t i i t

i u v

z e i e e− −
+ + + +

=

 = Σ − Σ 
 

∏ .           (7) 

Given Equation (7), the relative entropy constraint ( log )t t tE z z η<  becomes: 

1
, 1 , 1 1

1
2

T
u t u u te e η−

+ +Σ ≤ ,               (8) 

1
, 1 , 1 2

1
2

T
v t v v te e η−

+ +Σ ≤ ,               (9)  

where 1η  and 2η  are two constants, satisfying 1 2η η η+ = .  

In contrast with GX, we obtain the explicit unique form of the Radon-Nikodym derivative 

tz , and split the relative entropy constraint into two ambiguity constraints. This split allows us to 

specify distinct degrees of ambiguity aversion to returns and to their predictors in our model,6 

and thereby to clarify the different effects of these two types of ambiguity aversion on the 

optimal trading strategy. 

Inequalities (8) and (9) restrict the true values of expected returns and return predictors to 

lie in an ellipsoid centered at their respective estimated values. Compared with constraints such 

as , 1 1u te η+ <  and , 1 2v te η+ < , these ellipsoidal constraints can capture the impacts of securities’ 

                                                            
5 The proofs of this lemma and the following propositions are presented in the Appendix. 
6 In the empirical analysis, GX consider the cases in which investors are only averse to return ambiguity or predictor 
ambiguity. For instance, they consider the case in which investors are only averse to predictor ambiguity by setting 

1( )t t tE r Bf
+

= , meaning that there are no estimation errors in returns. This method is not able to truly distinguish 
between ambiguity aversion to returns and ambiguity aversion to return predictors. 
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correlations on estimation errors. Similarly, Goldfarb and Iyengar (2003), Garlappi et al. (2007), 

and Delage and Ye (2010) consider T 1
1 1 1 1ˆ ˆ( ( ) ) ( ( ) )t t t r t t tE r r E r r ε−
+ + + +− Σ − ≤  as a constraint in robust 

portfolio optimization, and show that such a constraint is practically relevant. Lemma 1 provides 

a theoretical explanation for such a specification of constraints in the previous studies.   

Finally, being ambiguity averse, investors solve the following robust control problem7: 

0 1

1
1

0 1,, , 0
max min

2 2u v

t T T T
t t t t u t t te ex x t

E E x r x x x xγ ρρ
−∞

+
+

=

  − Σ − ∆ Λ∆ 
 
∑



   

    1 1
, 1 , 1 , 1 , 1

1 2

1 1
2 2

T T
u t u u t v t v v te e e e

θ θ
− −

+ + + +

+ Σ + Σ 


,       (10) 

subject to 1 1t t tr Bf u+ += + , 

                       1 1t t tf f v+ += Φ + ,  

where 1 0θ >  and 2 0θ >  are the coefficients of aversion to ambiguity about returns and their 

predictors, respectively.8  

 Problem (10) is derived from Problem (4) with robust optimization and two additional 

constraints Equations (8) and (9) as the ambiguity sets, where 11 θ  and 21 θ  are the two 

Lagrange multipliers. As a function of 1η ( 2η ), 1θ ( 2θ ) translates the ambiguity set into a penalty 

term, and a higher value of 1θ ( 2θ ) corresponds to a higher 1η ( 2η ). In contrast with Problem (4), 

Problem (10) incorporates ambiguity aversion to returns and to their predictors, and ensures that 

even if the worst case in the ambiguity sets occurs, performance is still maximized (Gilboa and 

Schmeidler, 1989; Hansen and Sargent, 2001; Anderson et al., 2003). The occurrence of any 
                                                            
7 Consistent with GP, we focus on an infinite time horizon, because the optimality equations are easier to solve than 
they are in the finite horizon case (Merton, 1969). In addition, we can simplify our analysis by avoiding issues such 
as how to deal with the investment upon termination in the finite horizon case.  
8 These ambiguity coefficients are put in the denominator in Problem (10) to ensure that high values of 1θ  and 2θ
correspond to high values of 1η  and 2η .  
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other cases in the ambiguity sets will not make the performance worse, and thus the investor 

does not need to deviate from the optimal strategy given the ambiguity sets. Such a strategy is 

actually just sub-optimal, but is robust to estimation uncertainty.  

We take return ambiguity as an example to provide an economic interpretation for the model. 

Since the investor is not completely confident about the estimates of expected returns 1( )t tE r +
 , 

for a given confidence level (0,1)c∈ , he/she first specifies an ambiguity set 1
, 1 , 1 12T

u t u u te e η−
+ +Σ ≤ , 

such that the true values of expected returns 1( )t tE r +  lie in this set. If the investor is less 

confident about the estimated returns (a lower c ), he/she considers 1( )t tE r +  to be likely farther 

away from 1( )t tE r +
 . In this case, he/she tends to set a larger 1η , making the worst case even 

worse than the worst case with a smaller 1η .9 Thus, the corresponding optimal robust strategy 

becomes more conservative than before. As noted by Garlappi et al. (2007) and Cao et al. (2005), 

this means that the investor is more concerned about the estimation errors, or is more averse to 

ambiguity in returns.   

The above interpretation also helps understand how 1θ  and 2θ  are determined. Take 1θ  as 

an example. Since a low confidence level c  induces a large ambiguity set, the critical value 1η  

should satisfy ( )1
, 1 , 1 12 1T

u t u u tm e e cη−
+ +Σ ≤ = − , where the measure function ( )m ⋅  represents the size 

of the set. Given the facts that c  is a positive number below 1 and that 1
, 1 , 1

T
u t u u te e−

+ +Σ  follows a chi-

square distribution, we use probability measure tP  as the measure function m  for size 

consistency. Then, 1η  can be calculated under a chi-square cumulative distribution function. 

                                                            
9 We can prove that the worst case in the case of a higher ambiguity coefficient is worse than before. With the 
penalty term, the objective function includes a quadratic function of , 1u te +  ( , 1v te + ). If the investor’s degree of 
ambiguity aversion 1θ  ( 2θ ) increases, the minimum value of the quadratic function decreases.   
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Accordingly, 1θ  can be determined, using Karush-Kuhn-Tucker conditions.10 This is in sharp 

contrast with GX, where ambiguity aversion coefficients are arbitrarily set without using any 

particular method.  

2.3. The optimal trading strategy with ambiguity aversion  

Using robust dynamic programming (Iyengar, 2005; Hansen et al., 2006; Glasserman and 

Xu, 2013), we can solve Problem (10). The following proposition characterizes the conditions 

under which the solution exists, and also characterizes the optimal robust trading strategy and its 

corresponding value function. 

Proposition 1: If the following two conditions are both satisfied,  

Condition 1: 1
22 0v ffAρθ−Σ + > , 

Condition 2: 1 2 1 1
1 1 2 2( ) ( 2 ) 0T

u xx xf v ff xfJ A A A Aγ θ ρ ρ ρ θ ρθ− − −= + Σ + Λ + + Σ + > , 

then Problem (10) has a unique solution, which is given by: 

( )* 1 1 1
1 2 1( 2 )t t xf v ff t tx J Bf A I A f xρ ρθ ρ− − −

−= + + Σ Φ + Λ ,       (11) 

where the coefficient matrices Axx > 0, Axf, and Aff  are jointly determined by the following 

equations: 

1
1xxA J −= Λ −Λ ΛT ,              

1 1
1 2( ( 2 ) )vxf xf ffA J B A I Aρ ρθ− −= Λ + + Σ Φ ,                                                                             

1 1 1
1 2

1 ( ) ( ) ( 2 )
2 vff xf xf ff ffA A J A A I Aρ ρθ− − −= Λ Λ + Φ + Σ ΦT T .      (12) 

                                                            
10 It is noteworthy that 1) 1

, 1 , 1

T

u t u u te e−

+ +
Σ  follows a chi-square distribution because , 1u te

+  approximately follows a 

multivariate normal distribution with mean zero and covariance matrix associated with uΣ  (Wooldridge, 2013); 2) 
We postulate a linear relation between the confidence level and the size of the ambiguity set, and let the measure 
function be a probability measure. This is just one of the possible methods to calculate the critical value 1η . How to 
accurately determine 1η  deserves more research.  
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The value function is given by: 

1 1 1 1 0
1( , )
2

T T T
t xx t t tt t t t xf ffV x f x A x x A f f A f A− − − −= − + + + .       (13) 

The corresponding conditional expectations of 1tu +  and 1tv +   are given by: 

* *
, 1 1u t u te xθ+ = − Σ ,               (14) 

( ) ( )1* 1 *
, 1 2 22 2T

v t v ff xf t ff te A A x A fρθ ρθ
−−

+ = − Σ + + Φ .        (15) 

From the proof of this proposition, we see that Condition 1 guarantees the existence of the 

worst performance associated with return predictors, while Condition 2 ensures that the objective 

function is concave in xt. The economic interpretation is as follows. If Condition 1 does not hold, 

then for at least one return predictor, investors are not able to find the values that make the 

performance worst. Namely, performance deteriorates as the estimation errors of these predictors 

, 1v te +  increase. If Condition 2 is not satisfied, then for some assets, as their portfolio weights 

increase, the performance of the portfolio improves. In this case, there are no optimal holdings 

for these assets in the trading strategy: the greater the holdings of these assets, the better. 

However, such a strategy is not truly robust, as the portfolio returns are incorrectly adjusted for 

ambiguity. This is because *
, 1v te +  determined by Equation (14) is not the worst-case scenario for 

some predictors, given the fact that Condition 1 is also not satisfied in this case.11  

Coefficient matrices in Equation (12) are generally different from those in GP. If 1 2 0η η= = , 

then investors are no longer ambiguity averse. In this case, the last two terms that are used to 

penalize ambiguity in the objective function in Problem (10) disappear, and the model reduces to 

GP’s model. From Proposition 1, we see that 1θ  solely impacts the first term in the expression of 

                                                            
11 It is easy to prove that if Condition 2 does not hold, then Condition 1 will not hold.  
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1J , changing it from uγΣ  to 1( ) uγ θ+ Σ . However, 2θ  impacts all coefficient matrices J1, Axf, and 

Aff. 12 This shows that if there is solely return ambiguity aversion, our results are largely similar 

to those of GP’s model. The impact of ambiguity aversion on the optimal trading strategy arises 

primarily from ambiguity aversion to predictors. If we replace both 1θ  and 2θ  with θ  in these 

coefficient matrices, then they are the same as those in GX. Thus, unlike GX’s model, our model 

shows the distinct impacts of the two types of ambiguity aversion on the optimal trading strategy. 

The value function 1( , )t tV x f−  represents the maximum benefits, adjusted for transaction 

costs, risk, and ambiguity, of all the future portfolios starting from time t, given the portfolio 

holdings at time t – 1 and the predicting factors ft at time t. Note that Equation (13) and the value 

function in GP’s model are different, although both look like the same. This is because the 

coefficient matrices with ambiguity aversion differ from those in GP’s model.  

Equations (14) and (15) represent the estimation errors in returns and predictors, 

respectively, under the worst-case scenario. However, these are not the actual estimation errors. 

Rather, they are the largest possible estimation errors viewed by investors, as these errors are 

affected by ambiguity aversion coefficients 1θ  and  2θ . As we can see from Equations (14) and 

(15), these estimation errors are also positively related to the return variability uΣ  and predictor 

variability vΣ . This explains why conditional volatilities of asset returns play an important role 

in measuring premiums driven by ambiguity aversion (Jeong et al., 2015).  

                                                            
12 These matrices appear both on the left- and right-hand sides of the expressions of these matrices, as we are not 
able to provide the explicit expressions of these matrices. However, with contraction mapping principle, it is easy to 
prove that the solutions of these equations exist and are unique. In the empirical analysis, we calculate these 
matrices, using the iterative method of Ljungqvist and Sargent (2004). 
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3. Properties of the optimal trading strategy with ambiguity aversion 

We now investigate the properties of the optimal strategy determined by Problem (10). By 

examining Equation (11), we obtain three trading principles, which have important practical 

implications. The first two principles are similar to those in GP, but are modified to reflect the 

impact of ambiguity aversion. The third one is a new principle, which is not present in GP. 

3.1. The basic trading principles 

Proposition 2: Trade partially toward the aim.  

(i) The optimal portfolio can be written as: 

( )* 1 1
1( ) ( )t t tx I x aimκ κ κ κ− −
−= − + Λ + +Λ ⋅ ,         (16) 

where 1ρ−Λ = Λ , 1( ) u xxAκ γ θ ρ= + Σ + , and ( )1 *
1( )t t xf t taim Bf A E fκ ρ−
+= +  . *( )tE ⋅  is the 

conditional expectation operator under the worst-case scenario. 

(ii) The weight of the aim portfolio is given by:  

( ) Λ+Λ+Σ+−=Λ+ −− 1
1

1 )()( xxu AI ρθγκκ .         (17) 

Proposition 2 is in line with Proposition 2 in GP, implying that the optimal portfolio is a 

weighted average of the existing portfolio 1tx −  and an aim portfolio taim . The weight of the aim 

portfolio measures the speed of trading toward the aim, and is called the trading rate. Thus, 

transaction costs make it optimal to trade slowly. Equation (17) further shows that the trading 

rate increases with 1θ  and 2θ , indicating that ambiguity-averse investors trade faster toward the 

aim than other investors. 

Note that Equation (16) looks different from GP’s Equation (7). GP’s Equation (7) is 

obtained by taking the partial derivative of both sides of the valuation function with respective to 
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1tx − . Using this method, based on Equation (13) and Equation (B.2) in the appendix, the optimal 

robust strategy can be rewritten as follows: 

* 1 1
1 1(( ) )t t xx xx xf t tx x A A A f x− −
− −= + Λ − .                                                                              (18) 

Now, we see that Equation (18) is similar in format to GP’s Equation (7), although the 

coefficient matrices xxA  and xfA  in both equations differ. However, a comparison of Equation 

(18) and GP’s Equation (7) does not clearly show the distinction between the robust and non-

robust strategies. To better understand the impact of ambiguity aversion on the optimal trading 

strategy, we plug the expressions of nr
xxA  and nr

xfA , which are obtained from GP’s Equations (A8) 

and (A9), into GP’s Equation (7) and simplify the equation. This gives the following equation: 

* 1
1 1( ) ( ) ( )( )nr nr nr nr nr nr

t t u xx u xx t tx x A A aim xγ ρ γ ρ−
− −= + Σ + + Λ Σ + − ,                                            (19) 

where 1
1( ) ( ( ))nr nr nr

t u xx t xf t taim A Bf A E fγ ρ ρ−
+= Σ + + , and the superscript represents the results for the 

corresponding non-robust strategy. Similarly, we can obtain Equation (16).  

 A comparison of Equations (16) and (19) shows that the effect of aversion to return 

ambiguity can be interpreted as increasing the risk aversion parameter from γ  to 1γ θ+ . Hence, 

the presence of ambiguity aversion leads to a more conservative strategy. This is consistent with 

the findings in previous studies (Chen and Epstein, 2002; Maenhout, 2006; Jeong et al., 2015). 

Importantly, compared with Equation (19), Proposition 2 indicates that ambiguity aversion also 

impacts the aim portfolio itself, with the expectations of return predictors in Equation (19) being 

replaced with their values under the worst-case scenario.13 To better understand how the impact 

                                                            
13 Unlike Equation (19), the aim portfolio in Equation (16) is expressed in terms of 1

* ( )ttE f
+

 , which in turn depends 

on the optimal strategy *
tx . Equation (18) shows that *

tx  is a function of 1tx −  and tf . Plugging Equation (18) into 
the aim portfolio would eliminate *

tx  in the expression of the aim portfolio, allowing us to analyze the properties of 
the aim portfolio. 
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of ambiguity aversion on the optimal trading strategy differs from the impact of risk aversion, we 

rearrange the aim portfolio, and obtain the second trading principle. 

Proposition 3: Aim in front of the target.  

(i) The aim portfolio can be written as: 

( ) ( )( )1 1 *
1( )t xx t xx xx xf t taim A Markowitz A A A E fκ κ ρ ρ− −
+= − +  ,      (20) 

where ( ) 1
1( )t u tMarkowitz Bfγ θ −= + Σ  is the current optimal portfolio with ambiguity aversion in 

the absence of transaction costs. 1
1

* ( )xx xf ttA A E f−
+

  is the portfolio that maximizes risk-, ambiguity-, 

and costs-adjusted returns at all future dates under the worst-case scenario.14 

(ii) The second component in the aim portfolio can be written as: 

( ) ( )11 * 1 * 1 *
1 1 1 1( ) ( ) ( )xx xf t t xx t t xx tA A E f A J E aim A J xκ κ κ κ

−− − −
+ += + − Λ + − Λ  ,    (21) 

which means that strategy 1
1

* ( )xx xf ttA A E f−
+

  is just a combination of the worst-case expected aim 

portfolio 1
* ( )ttE aim +
  and the optimal portfolio *

tx . Additionally, 1
1 0xxA Jκ −− Λ =  in the absence of 

predictor ambiguity aversion. 

 Proposition 3 reveals that compared with the non-robust case, the robust aim portfolio is still 

the weighted average of the current Markowitz portfolio and the future portfolio 1
1

* ( )xx xf ttA A E f−
+

 . 

However, 1
1

* ( )xx xf ttA A E f−
+

  is no longer just the expected future aim portfolio. Rather, it is a 

combination of the expected future aim portfolio and the optimal portfolio. This new property 

can be illustrated in Figure 1. First, as noted by GP, portfolio taim  lies in front of portfolio 

Markowitzt, due to the presence of transaction costs. The weight of the current Markowitz 

                                                            
14 Given Equation (13), it is easy to prove that 1

1xx xf tA A f−

+
 is the trading strategy that maximizes the value function at 

time t + 1. 
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portfolio in the robust aim portfolio increases with return ambiguity aversion ( 1θ ). Thus, return 

ambiguity aversion and risk aversion impact the aim portfolio in the same fashion. On the other 

hand, the weight of the future portfolio 1
1

* ( )xx xf ttA A E f−
+

  increases with predictor ambiguity aversion 

( 2θ ). 

Second, the future portfolio 1
1

* ( )xx xf ttA A E f−
+

  is a weighted average of *
1( )t tE aim +

  and *
tx , due 

to the presence of factor ambiguity aversion, while it is equal to 1( )t tE aim +
  in GP’s model and is 

equal to *
1( )t tE aim +

  with solely return ambiguity aversion. Intuitively, in the presence of predictor 

ambiguity, the estimated evolution of predictors may deviate from the true evolution. To reduce 

the impact of the possible estimation biases, the future portfolio 1
1

* ( )xx xf ttA A E f−
+

  move partially 

toward the optimal portfolio *
tx , which is constructed based on both the existing portfolio 1tx −  

and current predictors tf  as shown in Equation (18). In general, *
tx  has a larger effect on 

1
1

* ( )xx xf ttA A E f−
+

  if the degree of predictor ambiguity aversion ( 2θ ) is higher. As we can see from 

Figure 1, the future portfolio 1
1

* ( )xx xf ttA A E f−
+

  is closer to *
tx  in the case of 2 1θ =  than it is in the 

case of 2 0.1θ = . 

In summary, Proposition 2 shows the effect of ambiguity aversion on the current robust 

strategy, while Proposition 3 demonstrates its effect on the robust strategy at future dates. 

Another reading of Proposition 3 is that ambiguity aversion and risk aversion impact the aim 

portfolio differently, and this difference arises primarily from aversion to factor ambiguity. To 

understand why the principle stated in Proposition 3 works, we further investigate the 

mechanism through which ambiguity aversion impacts the aim portfolio.  
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3.2. The additional trading principle with ambiguity aversion  

Proposition 4: Aim for a low expected loss.  

(i) The aim portfolio can be expressed as follows: 

( )1 1 1
1 1 1 1( ) ( )t f t x taim J K f J J K xκ κ κ− − −

−= + Λ + − −Λ ,       (22) 

where 1
2( 2 )f xf v ffK B A I Aρ ρθ −= + + Σ Φ  and xK = −Λ  are the adjustment coefficients for tf  and 

1tx − , respectively. This suggests that in the aim portfolio, the weight of adjusted predicting 

factors f tK f  is 1
1( )Jκ −+ Λ , while the weight of the adjusted existing portfolio 1x tK x −   is 

1
1 1( )J Jκ −− − Λ .  

(ii) In the presence of predictor ambiguity aversion, if the variability of predictors vΣ  is 

large, then f tK f   is small. This implies that the aim portfolio loads less on the highly volatile 

predictors. In addition, if the holdings of securities in the existing portfolio are large and costly 

(a low value of 1tx −−Λ ), then the aim portfolio loads less on these securities.  

Proposition 4 explains the way in which ambiguity aversion impacts the aim portfolio, and 

furthers our understanding of how the effects of ambiguity aversion and risk aversion differ. The 

first implication of Proposition 4 is that with ambiguity aversion to return predictors, the 

adjustment coefficient fK  is affected by vΣ . Without ambiguity aversion, the aim portfolio loads 

more on securities with more persistent predictors (larger Φ ), since such a trading strategy not 

only generates a high expected return now, but also is expected to generate a high expected 

return for a longer time in the future (GP, 2013). However, Proposition 4 shows that if the 

predictors with a slower mean-reversion are highly volatile, the aim portfolio with ambiguity 

aversion should not give more weights to these predictors. Figure 2 illustrates the impact of 

predictor variability on portfolio positions. In the figure, assets 1 and 2 both have the same mean-
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reverting speed in predictor dynamics, but asset 1’s predictor is more volatile. Since the aim 

portfolio downweights highly-volatile predictors, it loads more heavily on asset 2. In addition, 

the difference between these two positions increases with the ambiguity aversion coefficient 2θ .   

Intuitively, if return predictors are highly volatile, then the estimated mean-reverting 

coefficients Φ  are more likely to be biased. As a result, these estimated coefficients are not 

reliable, even if they are large. Investors who follow the strategy with these largely biased 

estimates may experience huge losses, since security returns are likely to be seriously 

misspecified. Hence, investors with ambiguity aversion should trade toward an aim portfolio that 

is tilted toward the less volatile return predictors. 

Another implication of Proposition 4 is that with ambiguity aversion to predictors, the aim 

portfolio is also affected by transaction costs Λ  and existing asset holdings 1−tx . To reduce the 

potential loss due to estimation errors, the aim portfolio should also load less on securities with 

large and costly existing positions. To illustrate, we consider an optimal strategy with two assets. 

In the first case, the positions in the two assets in the existing portfolio are the same, but the 

position in asset 1 has a higher transaction cost. Figure 3-A shows that the current aim portfolio 

loads less on asset 1 than on asset 2. In the second case, the transaction costs of the two assets are 

the same, while asset 1 has a larger position in the existing portfolio. Figure 3-B shows that the 

aim portfolio loads less on asset 1, and this remains true until the positions in both assets are 

identical.   

This can be interpreted as follows. If the estimated mean-reverting coefficients Φ  are biased, 

the future returns of corresponding securities may be overestimated. In this case, the resulting 

upward-biased positions of these securities entail more transaction costs, but are not able to 

achieve the predicted return levels. Moreover, these biased positions will have to be rebalanced 
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in subsequent periods, which incurs further costs. As a consequence, estimation errors may lead 

to substantial fluctuations in the security positions over time, driving down the net returns. Even 

though the estimated coefficients Φ  are less likely biased with less volatile predictors, the 

expected loss can be huge for securities with high transaction costs and large positions in the 

existing portfolio. Thus, the effects of estimation errors on portfolio performance are more 

pronounced if the existing security holdings are particularly large and costly.  

In summary, this third trading principle suggests two channels through which the aim 

portfolio minimizes the expected loss. One is to load less on securities with highly volatile 

predictors to reduce the likelihood of estimation errors occurring. The other is to load less on 

securities with large and costly existing positions to reduce the size of losses arising from 

estimation errors. This trading principle is to address the ambiguity aversion to return predictors.  

4. Performance of the robust trading strategy: An empirical investigation 

This section investigates the effectiveness of the robust strategy, using data on various 

commodity futures. The purpose is to illustrate how the robust strategy can be applied in practice, 

and to identify the drivers of its superior performance. 

4.1. The data 

Following GP, we consider 15 commodity futures, including aluminum, copper, nickel, zinc, 

lead, and tin from the London Metal Exchange (LME), gasoil from the Intercontinental 

Exchange (ICE), WTI crude, RBOB unleaded gasoline, and natural gas from the New York 

Mercantile Exchange (NYMEX), gold and silver from the New York Commodities Exchange 

(COMEX), coffee, cocoa, and sugar from the New York Board of Trade (NYBOT). The sample 

period is from January 1, 1996 to December 31, 2015 for all futures. The data on futures prices is 
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obtained from Bloomberg, the contract multipliers are from the respective exchanges, and the 

risk-free rate is from Kenneth R. French’s website.15 

For consistency with GP, we use the most liquid futures of all maturities available to 

construct each futures’ data series. Based on these series, we calculate the excess rate of return 

(henceforth, returns) on each futures at time t.16 Unlike GP, all data is used for rolling out-of-

sample tests to gauge the difference in performance between robust and non-robust strategies. 

Specifically, for each month from July 1, 1996, we estimate the model parameters using the data 

on the predictors from the previous six months (Moskowitz et al., 2012; Barroso and Santa-Clara, 

2015). For example, we use the data from January to June 1996 (referred to as rolling window) 

to estimate model parameters for July 1996 (investment window). 17  Table 1 presents the 

summary statistics of each futures’ daily returns for the last rolling window (June to November 

2015) and investment window (December 2015).   

4.2. Model estimation 

 We first estimate the factor loadings B and the mean-reversion coefficients Φ for return 

predictors. Following the literature (Erb and Harvey, 2006; Asness et al., 2013; Gârleanu and 

Pedersen, 2013), for the futures contract s, we choose predictors 5 ,D sf , 1 ,Y sf , and 5 ,Y sf , which 

are the moving averages of daily returns over the past five days, one year, and five years, divided 

by their respective standard deviations. When calculating the average of daily returns over the 

past year, we skip the most recent month’s return to avoid the one-month reversal in returns 

(Grinblatt and Moskowitz, 2004; Asness et al., 2013). To illustrate the estimation results, we 

report the results for the last 6-month rolling window (June to November 2015) as follows: 

                                                            
15 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
16 To calculate the rates of return, we always use the prices of a given contract. 
17 Note that the calculation of return predictors for the period from January to June 1996 may use historical data 
from the period from January 1991 to December 1995. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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5 , 1 , 5 ,
1 10.0011 0.0008 0.0174 0.0662

          (-0.07)     (1.12)              (-1.56)            (1.48)

s D s Y s Y s s
t t t t tr f f f u+ += − + − + +

,     (23) 

5 , 5 , 5 ,
1 10.8099D s D s D s

t t tf f v+ += + , 1 , 1 , 1 ,
1 10.9923Y s Y s Y s

t t tf f v+ += + , 5 , 5 , 5 ,
1 10.9963Y s Y s Y s

t t tf f v+ += + .     (24) 

 The model parameters are estimated using feasible generalized least squares, and the 

numbers reported in the brackets are the t-statistics. The results in Equation (23) indicate short- 

and long-term momentum and medium-term reversals in commodity futures prices. In addition, 

the results in Equations (24) confirm that the return-predicting factors are mean reverting with 

various mean-reversion rates. Based on these estimates, we can write the matrices of factor 

loadings and the mean-reversion coefficients for the predictors as follows:18  

( ) 15 150.0008 0.0174 0.0662 IB ×− ⊗= , 15 15

0.8099                  
               0.9923
                            0.9963

I ×

 
 Φ = ⊗ 
 
 

,  (25) 

where ⊗  denotes the Kronecker product of matrices, and 15 15I ×  is the 15-by-15 identity matrix. 

Note that the estimation results in Equation (23) differ substantially from those in GP and 

GX, in terms of the magnitude, sign, and significance of the coefficients. The difference in 

magnitude of the coefficients arises, because in this analysis, rates of return rather than dollar 

returns (price changes) are used to calculate asset returns and return predictors. The difference in 

the sign and significance of some predictors arises, because we use a 6-month window to 

estimate Equation (23) for our rolling out-of-sample tests, while GP’s and GX’s estimation 

period is more than 13 years, from January 1, 1996 to January 23, 2009. With a short rolling 

                                                            
18 The vector of the factors is ( )T5 ,1 5 ,15 1 ,1 1 ,15 5 ,1 5 ,15, , , , , , , ,D D Y Y Y Y

t t t t t t tf f f f f f f=    . 
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window for estimation, the significance of the estimates can be reduced, and the sign of these 

estimates may vary across different estimation periods.19 

Then, we estimate the variance-covariance matrices uΣ  and vΣ . Since our model ignores the 

estimation errors in these two matrices, we use the daily returns and predictors in investment 

windows to calculate uΣ  and vΣ  to control for the effects of estimation errors in these matrices 

on the performance of the optimal strategies. Consistent with the model assumptions, both 

matrices are assumed to be constants in an investment window. 

Third, following GP, we assume that transaction costs are proportional to the amount of risk 

uλΛ = Σ , and set the multiple 75 10λ −= × . Meanwhile, we set the absolute risk aversion 910γ −= , 

which means that for an agent with $1 billion under management, the relative risk aversion is 

one. We also assume that annualized discount rate is 2%, meaning that with approximately 260 

trading days in a year, the discount factor is 1/ (1 0.02 / 260)ρ = + .  

Finally, we specify ambiguity aversion coefficients 1θ  and 2θ , based on the analysis in 

Section 2.2. Take 1θ  as an example. Since , 1u te +  follows a multivariate normal distribution with 

mean zero and covariance matrix T T 1( )t t uf F F f− Σ , where T
1 1( , , , )n nF f f f− − + −=   is the rolling 

window’s predictor matrix and n  is the rolling window size (Wooldridge, 2013), 

T T 1 1
, 1 , 1( ( ) )T

u t t t u u te f F F f e− −
+ +Σ  follows the chi-square distribution 2 (15)χ . Thus, for any time t, the 

constraint 1η  is given by: 

T T 1 1
1

1 ( ) (1 )
2 t tf F F f m cη − −= ⋅ − ,                                                                                       (26)   

                                                            
19 In fact, this means that model parameters are estimated with estimation errors, and this can help demonstrate the 
advantage of the robust trading rules. Similarly, Anderson et al. (2009) also illustrate the contribution of ambiguity 
premium to asset pricing by allowing model misspecification and insignificance of model parameters.  
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where m  is the cumulative distribution function of 2 (15)χ , and c  is investors’ level of 

confidence in return estimates. According to Karush-Kuhn-Tucker conditions, if there exists 1θ , 

*
, 1u te +  in Equation (14) should satisfy * T 1 *

, 1 , 1 1( ) 2u t u u te e η−
+ +Σ = . Similarly, we can also obtain an 

equation that establishes the relationship between 2θ  and 2η . Finally, these two equations are 

used to solve for 1θ  and 2θ  simultaneously by numerical iteration. We assume that 1θ  and 2θ  are 

constants over time for brevity, setting the values equal to their respective estimated medians in 

the sample period. Using this method, we obtain 10
1 10θ −=  and 7

2 5 10θ −= ×  for a confidence level 

of 90%. Given that different investors may have different confidence levels, we also consider 

alternative values of 1θ  and 2θ  in the analysis.     

4.3. Performance of robust trading strategy 

To evaluate the performance of a trading strategy, we focus on its Sharpe ratio, which is 

defined as follows: 

average daily dollar returns
260

stardard deviation of daily dollar returns
SR = × .               (27) 

Similar to GX, we use dollar returns rather than rates of return to calculate Sharpe ratio. 

This is because when constructed with futures contracts, the portfolio has no principal if ignoring 

the futures margin, and thus the percentage returns of the portfolio cannot be calculated. 

Table 2 reports the mean and standard deviation of daily dollar returns before transaction 

costs, the gross Sharpe ratios and the net Sharpe ratios (net of transaction costs) for the optimal 

strategies with various ambiguity-aversion coefficient combinations 1 2( , )θ θ . Non-robust in 1θ  or 

2θ  represents the strategy without robustness in returns or predictors, meaning that there is not 

ambiguity aversion about returns or predictors. In particular, the combination (non-robust in 1θ , 
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non-robust in 2θ ) corresponds to the non-robust strategy in GP, and ( 10
1 10θ −= , 7

2 5 10θ −= × ) is 

referred to as the base-case robust strategy.  

The results in Table 2 show that in all cases the robust portfolio outperforms the non-robust 

one, in terms of gross Sharpe ratio. In addition, the gross Sharpe ratio of the robust portfolio 

improves as the ambiguity aversion coefficients increase. We note that the mean and standard 

deviation of the robust portfolio returns are lower than those of the non-robust portfolio returns. 

This suggests that the robust strategy generates a higher gross Sharpe ratio, because the dollar 

returns on the robust portfolio are less volatile than those on the non-robust portfolio. As the 

degree of ambiguity aversion increases, the effect of risk reduction becomes more significant, 

leading to a higher gross Sharpe ratio.  

A comparison of the net Sharpe ratios of the robust and non-robust strategies confirms that 

the robust strategy performs better. Importantly, the improvement in net Sharpe ratio of the 

robust strategy over the non-robust one is much more pronounced than the improvement in gross 

Sharpe ratio. Naturally, the Sharpe ratios after transaction costs are reduced in all cases. The 

percentage reduction in Sharpe ratio after transaction costs is smaller for the robust strategy than 

for the non-robust strategy, indicating that the robust strategy incurs relatively low transaction 

costs. Our findings show that by accounting for ambiguity aversion, the robust strategy is able to 

reduce the transaction costs associated with biased positions in securities with biased estimated 

returns and predictors, thereby improving net Sharpe ratio in a more significant way than the 

non-robust strategy.  

To understand why the robust strategy can generate less volatile returns and better reduce 

transaction costs, Figure 4 depicts the positions of gold futures in the base-case robust and the 
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non-robust portfolios.20 We see from Figure 4-A that the position of gold futures in the non-

robust portfolio is large and fluctuates substantially over time, while the position in the robust 

portfolio is small and less variable. To examine the underlying reason for this phenomenon, we 

focus on the period from January 2006 to December 2007, and depict, in Figure 4-B, the 

positions of the two strategies along with the monthly returns on gold futures for the same period. 

We note that the positions of both strategies change as a result of fluctuations of the futures 

returns, as past returns are used as predictors to forecast future returns in both strategies. Since 

the gold futures returns are high prior to June 2006, the position of the non-robust portfolio is 

rebalanced from short selling prior to June 2006 to buying long for the period June to October 

2006, while the robust strategy is less aggressive in building up a large gold position in the same 

period. Since the futures returns are actually low from June to October 2006, the non-robust 

strategy suffers larger losses. Moreover, the non-robust strategy’s position decays substantially 

from November 2006 to March 2007 in response to the low predictors prior to November, which 

incurs additional transaction costs. This clearly shows the impact of estimation errors of on 

portfolio positions.  

Over the whole sample period, a large percentage of transactions of the non-robust strategy 

are attributable to over-responses to biased estimated returns and predictors. In contrast, the 

robust strategy trades less aggressively than the non-robust strategy. This explains why the non-

robust strategy entails substantial transaction costs and generates particularly low net Sharpe 

ratios compared with the robust strategy. Our result is in line with Garlappi et al.’s (2007) 

finding that the portfolio weights derived from the model with ambiguity aversion are less 

                                                            
20 We depicts the gold futures as an example, since its position is the largest one in both the robust and non-robust 
portfolios.   
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unbalanced and fluctuate much less over time than do the portfolio weights from the standard 

mean-variance model.  

Proposition 3 indicates that the robust and non-robust strategies differ because of their 

distinct aim portfolios. To see this, Figure 4-C depicts the positions of gold futures in the aim 

portfolios of both strategies. We note that the moving trends and fluctuations in the positions of 

the aim portfolios for the two strategies are similar to those observed in Figure 4-A. This 

indicates that the substantial fluctuations in the position of the non-robust strategy are mainly due 

to the substantial changes in the position of its aim portfolio.  

4.4. Impacts of transaction costs and predictor variability on performance 

Proposition 4 indicates that the key to the superior performance of the robust strategy is that 

ambiguity aversion to predictors leads to small positions in the securities with highly volatile 

predictors and those with large and costly existing portfolio positions. Hence, the improved 

performance of the robust strategy is related to the levels of transaction costs and predictor 

variability. To illustrate, we consider three different levels of transaction costs: low costs 

( 85 10λ −= × ), medium costs ( 75 10λ −= × ), and high costs ( 65 10λ −= × ), as well as three levels of 

predictor variability: low variability (1 v×Σ ), medium variability ( 2 v×Σ ), and high variability 

( 4 v×Σ ).21 For this exercise, we consider robust strategies with non-robustness in 2θ  (henceforth, 

without 2θ ) and various values of 2θ . In all the cases considered, 1θ  is set equal to the base-case 

value. The performance measures include the gross and net Sharpe ratios of these strategies, as 

                                                            
21 When some or all the factors have a particularly high level of variability (e.g., vΣ×=10λ ), Condition 1 in 

Proposition 1 is not satisfied, and thus no estimation error in predictors under the worst-case scenario ( *

, 1v te
+

) can be 
identified. Intuitively, since the predictors are so volatile that investors no longer trust the estimate of Φ , we cannot 
find the values of the predictors that minimize performance. In our numerical analysis, Conditions 1 and 2 are not 
binding.  
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well as their means of daily dollar returns (MR) and means of daily dollar transaction costs (MC) 

expressed as the percentage of those of the corresponding strategies without 2θ . 

Panel A of Table 3 reports the performance of various portfolios in the cases of low, 

medium, and high transaction costs. In terms of net Sharpe ratio, the strategy with 2θ  

outperforms the strategy without 2θ  for any given level of transaction costs, which is consistent 

with the findings in Table 2. Moreover, for any given 2θ , the improvement in net Sharpe ratio 

becomes more pronounced as transaction costs increase. However, in terms of gross Sharpe ratio, 

the same does not hold true. The gross Sharpe ratios of the strategy with relatively low values of 

2θ  are even lower than the gross Sharpe ratio of the strategy without 2θ  when transaction costs 

are high. This is because compared with the strategy without 2θ , the strategy with 2θ  is more 

conservative. As the transaction costs increase, the strategy with 2θ  will lower the positions of all 

securities in the portfolio, reducing its ability to capture high returns. This is reflected in the 

values of MR, which are all less than 1 and decline as transaction costs increase for any given 2θ . 

However, compared with the strategy without 2θ , for any strategy with 2θ , the reduction in TC is 

greater than the reduction in MR, which is particularly pronounced in the case of high transaction 

costs. This explain why the strategy with 2θ  is better able to improve its net Sharpe ratio 

compared with the strategy without 2θ  when transaction costs are particularly high.  

Panel B of Table 3 reports the performance of various strategies in the cases of low, medium, 

and high levels of predictor variability. For any given level of 2θ , we find that the improvement 

in net Sharpe ratio of the strategy with 2θ  becomes more pronounced, as the predictors become 

more volatile. While the improvement in gross Sharpe ratio of the strategy with 2θ  decreases 
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slightly with predictor variability in the case of 8
2 5 10θ −= × , it increases with predictor variability 

in the other two cases. For any given 2θ , while both MR and TC of the robust portfolio with 2θ  

decline as the level of predictor variability rises, the decline in TC is greater than the decline in 

MR. Thus, the strategy with 2θ  is better able to reduce transaction costs due to estimation errors 

when predictor variability is high. This is because our model indicates that the holdings of 

securities in its corresponding portfolio are affected by predictor variability. Collectively, the 

results suggest that as predictors become more volatile, by loading less on securities with highly 

volatile predictors, the strategy with 2θ  is better able to deliver superior performance than the 

strategy without 2θ .  

4.5. Robust versus scaled non-robust strategies  

Our analysis shows that as a result of controlling for estimation risk, the robust portfolio has 

smaller positions than the corresponding non-robust portfolio. Interestingly, Barroso and Santa-

Clara (2015) document that the position of the momentum strategy can be scaled down to 

practically eliminate the crash risk of momentum. Kan and Zhou (2007) and DeMiguel et al. 

(2015) propose to control for estimation risk by scaling down the positions of the Markowitz 

portfolio in the optimal strategy. In this section, we evaluate the performance of the base-case 

robust strategy relative to that of a scaled non-robust strategy to better understand the role of 

ambiguity aversion in portfolio selection.  

Inspired by Barroso and Santa-Clara (2015), at each time the model is updated, we scale 

down the non-robust portfolio in the next investment period as follows: 

6

6

R
s
t t tNx sx xσ

σ
−

−

= = ,               (29) 



33 
 

where 6
Rσ−  and 6

Nσ−  are the standard deviations of the previous six-month realized dollar returns 

of the robust and non-robust portfolios, respectively. tx  is the position of the original non-robust 

portfolio at time t . Clearly, the variance of the scaled non-robust portfolio approximately equals 

that of the robust portfolio.  

 Figure 5-A depicts the positions of gold futures in the robust portfolio and the scaled non-

robust portfolio, and Figure 5-B displays the cumulative dollar returns on the robust, non-robust, 

and scaled non-robust strategies after transaction costs. While the gold position in the scaled 

non-robust portfolio is generally larger than the position in the robust portfolio, it is much 

smaller than the position in the original non-robust portfolio as illustrated in Figure 4-A. This 

explains why in Figure 5-B the moving trend of the cumulative dollar returns of the scaled non-

robust portfolio and the robust portfolio are similar, and why the volatilities of these portfolios 

are significantly reduced compared with that of the original non-robust portfolio.  

 Table 4 reports the Sharpe ratios of the robust, non-robust, and scaled non-robust portfolios, 

as well as their mean and standard deviation of daily dollar returns before transaction costs. We 

note that while the gross Sharpe ratio of the scaled non-robust portfolio is slightly lower than that 

of the original non-robust portfolio, its net Sharpe ratio is much higher. This provides strong 

evidence that by scaling down positions, the scaled non-robust portfolio can lower transaction 

costs and portfolio volatility, thereby improving net Sharpe ratio. However, both the gross and 

net Sharpe ratios of the scaled non-robust portfolio are still lower than those of the robust 

portfolio. The reason is that scaling down positions of the non-robust portfolio not only lowers 

its transaction costs, but also reduces its ability to capture high returns. In contrast, while the 

robust trading strategy is also conservative about building up large positions, it particularly loads 

less on the assets with highly volatile factors and those with high and costly existing positions. 
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Thus, the robust portfolio is able to generate higher average daily dollar returns than the scaled 

non-robust portfolio, resulting in a higher Sharpe ratio.  

To better understand the superior performance of the robust portfolio relative to the scaled 

non-robust portfolio, using GP’s findings, we rearrange Equation (28) as follows: 

1
1 1( _ )s nr s nr s

t t t xx t tx sx x A s nonrob aim x−
− −= = + Λ × −  

1
1 1(1 ) ( )s nr t s

t xx t t
t

x A z z E s Markowitz xτ
τ

τ

∞
− −

− −
=

 = + Λ − × − 
 
∑ ,      (29) 

where _ tnonrob aim  is the original non-robust aim portfolio at time t, 1( ) ( )u xx uz Aγ γ−= Σ + Σ  is 

the weight of the existing Markowitz portfolio in the non-robust aim portfolio, and nr
xxA  is the 

coefficient matrix without ambiguity aversion. Equation (29) shows that the scaling factor s  is 

applied solely to the aim portfolio in the non-robust strategy, while the trading rate 1
xxA−Λ  and 

the weight of the existing Markowitz portfolio z  remain unchanged. In contrast, to mitigate the 

effect of estimation errors, the robust strategy adjusts not only the rate of trading toward the aim 

portfolio but also the components of the aim portfolio, thereby resulting in reduced portfolio 

positions. It follows that simply scaling down the position of the non-robust strategy without 

taking ambiguity aversion into consideration is not able to achieve the superior out-of-sample 

performance of the robust strategy.  

5. Conclusion 

Previous work in the finance literature documents that security returns are predictable; 

however, the predicted returns are just an approximation of reality, due to the presence of model 

and parameter uncertainties. Estimation errors in security returns could lead to poor portfolio 

performance, particularly when transaction costs are high. This paper investigates the optimal 

portfolio choice in the presence of transaction costs and ambiguity aversion. Adopting GX’s 



35 
 

robust optimization method, we extend GP’s model by incorporating ambiguity aversion into the 

model framework. Unlike GX’s model, we allow investors to have different degrees of 

ambiguity aversion to returns and to return predictors. We not only derive the optimal robust 

dynamic trading strategy in closed form, but also characterize its properties and clarify the 

unique mechanism through which the robust strategy improves out-of-sample performance over 

the non-robust strategy. 

Similar to GP’s model, our model indicates that the optimal strategy is to trade partially 

toward an aim portfolio as well as to aim in front of the optimal portfolio derived from 

Markowitz’s (1952) model. In contrast with GP’s non-robust strategy, our robust strategy is also 

to aim for a low expected loss. Investors with ambiguity aversion to return predictors trade 

toward an aim portfolio that loads less on highly volatile predictors. Additionally, the aim 

portfolio loads less on securities with large and costly existing portfolio holdings. Essentially, the 

robust strategy is able to minimize the impacts of estimation errors on portfolio performance, by 

reducing the positions of securities with great parameter uncertainty as well as those with great 

potential losses associated with model and parameter ambiguity. This is the key driver of the 

superior performance of the robust strategy relative to the non-robust strategy.  

Using data on commodity futures, we show that the robust strategy outperforms the non-

robust strategy in out-of-sample tests. We further find that the robust strategy is better able to 

improve its performance relative to the non-robust strategy when transaction costs and predictor 

variability are larger. Simply scaling down the position of the non-robust portfolio is not able to 

achieve the superior performance of the robust strategy. 

 
 

    
  



36 
 

References 

1. Anderson, E.W., Ghysels, E., Juergens, J.L., 2009. The impact of risk and uncertainty on 

expected returns. Journal of Financial Economics 94(2), 233-263. 

2. Anderson, E.W., Hansen, L.P., Sargent, T.J., 2003. A quartet of semigroups for model 

specification, robustness, prices of risk, and model detection. Journal of the European 

Economic Association 1(1), 68-123. 

3. Asness, C.S., Moskowitz, T.J., Pedersen, L.H., 2013. Value and momentum everywhere. 

Journal of Finance 68(3), 929-985. 

4. Barberis, N., 2000. Investing for the long run when returns are predictable. Journal of 

Finance 55(1), 225-264. 

5. Barroso, P., Santa-Clara, P., 2015. Momentum has its moments. Journal of Financial 

Economics 116(1), 111-120. 

6. Bertsimas, D., Pachamanova, D., 2008. Robust multiperiod portfolio management in the 

presence of transaction costs. Computers & Operations Research 35(1), 3-17. 

7. Black, F., Litterman, R., 1992. Global portfolio optimization. Financial Analysts Journal 

48(5), 28-43. 

8. Branger, N., Larsen, L.S., Munk, C., 2013. Robust portfolio choice with ambiguity and 

learning about return predictability. Journal of Banking & Finance 37(5), 1397-1411. 

9. Cao, H.H., Wang, T., Zhang, H.H., 2005. Model uncertainty, limited market participation, 

and asset prices. Review of Financial Studies 18(4), 1219-1251. 

10. Chen, Z., Epstein, L., 2002. Ambiguity, risk, and asset returns in continuous time. 

Econometrica 70(4), 1403-1443. 



37 
 

11. Delage, E., Ye, Y., 2010. Distributionally robust optimization under moment uncertainty 

with application to data-driven problems. Operations Research 58(3), 595-612. 

12. DeMiguel, V., Martín-Utrera, A., Nogales, F.J., 2015. Parameter uncertainty in multiperiod 

portfolio optimization with transaction costs. Journal of Financial and Quantitative Analysis 

50(6), 1443-1471. 

13. Epstein, L., Wang, T., 1994. Intertemporal asset pricing under Knightian uncertainty. 

Econometrica 62(2), 283-322. 

14. Epstein, L.G., Schneider, M., 2008. Ambiguity, information quality and asset pricing. Journal 

of Finance 63(1), 197-228. 

15. Erb, C.B., Harvey, C.R., 2006. The strategic and tactical value of commodity 

futures. Financial Analysts Journal 62(2), 69-97. 

16. Garlappi, L., Uppal, R., Wang, T., 2007. Portfolio selection with parameter and model 

uncertainty: A multi-prior approach. Review of Financial Studies 20(1), 41-81. 

17. Gârleanu, N., Pedersen, L.H., 2013. Dynamic trading with predictable returns and transaction 

costs. Journal of Finance 68(6), 2309-2340. 

18. Gilboa, I., Schmeidler, D., 1989. Max-min expected utility with non-unique prior. Journal of 

Mathematical Economics 18(2), 141-153. 

19. Glasserman, P., Xu, X., 2013. Robust portfolio control with stochastic factor dynamics. 

Operations Research 61(4), 874-893. 

20. Grinblatt, M., Moskowitz, T.J., 2004. Predicting stock price movements from past returns: 

The role of consistency and tax-loss selling. Journal of Financial Economics 71(3), 541-579. 

21. Hansen, L.P., Sargent, T.J., 2001. Robust control and model uncertainty. American 

Economic Review 91(2), 60-66. 



38 
 

22. Hansen, L.P., Sargent, T.J., Turmuhambetova, G., Williams, N., 2006. Robust control and 

model misspecification. Journal of Economic Theory 128(1), 45-90. 

23. Iyengar, G.N., 2005. Robust dynamic programming. Mathematics of Operations Research 

30(2), 257-280. 

24. Jeong, D., Kim, H., Park, J.Y., 2015. Does ambiguity matter? Estimating asset pricing 

models with a multiple-priors recursive utility. Journal of Financial Economics 115, 361-382. 

25. Kan, R., Zhou, G., 2007. Optimal portfolio choice with parameter uncertainty. Journal of 

Financial and Quantitative Analysis 42(3), 621-656. 

26. Ljungqvist, L., Sargent, T., 2004. Recursive Macroeconomic Theory (2nd edition). MIT 

Press, Cambridge, MA. 

27. Maenhout, P.J., 2004. Robust portfolio rules and asset pricing. Review of Financial Studies 

17(4), 951-983. 

28. Maenhout, P.J., 2006. Robust portfolio rules and detection-error probabilities for a mean-

reverting risk premium. Journal of Economic Theory 128(1), 136-163. 

29. Markowitz, H., 1952. Portfolio selection. Journal of Finance 7(1), 77-91. 

30. Merton, R.C., 1969. Lifetime portfolio selection under uncertainty: The continuous-time case. 

Review of Economics and Statistics 51(3), 247-257. 

31. Moskowitz, T.J., Ooi, Y.H., Pedersen, L.H., 2012. Time series momentum. Journal of 

Financial Economics 104(2), 228-250. 

32. Pástor, Ľ., Stambaugh, R.F., 2012. Are stocks really less volatile in the long run? Journal of 

Finance 67(2), 431-478. 

33. Wooldridge, J.M., 2013. Introductory econometrics: a modern approach (5th edition). South-

Western, Mason, OH. 



39 
 

Figure 1. The aim portfolio in the presence of ambiguity aversion 

  
This figure shows the aim portfolio choice with two securities (assets 1 and 2). The Markowitz portfolio is the 
current optimal portfolio with ambiguity aversion in the absence of transaction costs. 1

1
* ( )xx xf ttA A fE−

+  is the portfolio 

that maximizes risk-, ambiguity-, and costs-adjusted returns at all future dates. ( )tE ⋅  is the conditional expectation 

operator with respect to the probability measure tP  that is induced by tF . * ( )tE ⋅  is the conditional expectation 

operator under the worst-case scenario. The left panel shows the aim portfolio choice in the case of 2 0.1θ = , while 

the right panel shows the aim portfolio choice in the case of 2 1θ = .  

 

Figure 2. The effect of factor variability on the aim portfolio 

  
This figure shows the effect of return predictor variability on the aim portfolio choice with two securities (asset 1 
and 2). Asset 1’s return-predicting factors are more volatile than asset 2’s. The Markowitz portfolio is the current 
optimal portfolio with ambiguity aversion in the absence of transaction costs. ( )tE ⋅  is the conditional expectation 

operator with respect to the probability measure tP  that is induced by tF . The left panel considers the case in which 

2 0.1θ = , while the right panel considers the case in which 2 1θ = .   
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Figure 3. The effects of transaction costs and asset positions on the aim portfolio 

  
Figure 3-A: Impacts of transaction costs Figure 3-B: Impacts of initial asset positions 

 
This figure shows the effects of transaction costs (left panel) and initial asset positions (right panel) on the aim 
portfolio choice with two securities. The Markowitz portfolio is the current optimal portfolio with ambiguity 
aversion in the absence of transaction costs. ( )tE ⋅  is the conditional expectation operator with respect to the 

probability measure tP  that is induced by tF . The left panel considers the case in which asset 1 has higher 

transaction costs than asset 2, while the right panel considers the case in which asset 1 has a larger initial position in 
the existing portfolio than asset 2. 
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Figure 4. The positions of gold futures in the robust and non-robust strategies  

  
Figure 4-A: Gold positions of the robust and non-
robust strategies 

Figure 4-B: Gold positions of the robust and non-
robust strategies and monthly rates of return for 
gold futures for the period from January 3, 2006 to 
December 31, 2007. 

 

 

Figure 4-C: Gold positions in the robust and non-
robust aim portfolios  

 
Figures 4-A and 4-B display the positions of gold futures in the robust and non-robust strategies over time. Figure 4-
C displays gold positions in the robust and non-robust aim portfolios over time.  
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Figure 5. Gold positions in the robust and scaled portfolios as well as cumulative dollar returns 
of the robust, non-robust, and scaled non-robust portfolios 

  
Figure 5-A: Gold positions of the robust and scaled 
strategies 

Figure 5-B: Cumulative dollar returns after 
transaction costs  

 
This figure depicts the gold positions in the robust and scaled non-robust portfolios as well as cumulative dollar 
returns after transaction costs of the robust, non-robust, and scaled non-robust portfolios for the period from January 
2, 1997 to December 31, 2015. 
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Table 1. Summary statistics of data  

Commodity Contract 
multiplier 

June-November 2015 (Rolling window) December 2015 (Investment window) 
Average daily 

returns (%) 
Standard 

deviation of daily 
returns (%) 

Average daily 
returns (%) 

Standard 
deviation of daily 

returns (%) 
Aluminum 25 -0.14  1.08  0.20  1.24  
Cocoa 10 0.02  0.96  -0.18  1.19  
Coffee 37,500 -0.07  2.10  0.29  1.66  
Copper 25 -0.21  1.59  0.13  1.36  
Crude 1,000 -0.30  2.72  -0.52  2.84  
Gasoil 100 -0.27  2.03  -1.11  2.71  
Gold 100 -0.09  0.88  -0.02  1.08  
Lead 25 -0.05  1.53  0.42  1.61  
NatGas 10,000 -0.20  2.46  0.34  5.24  
Nickel 6 -0.26  2.29  -0.03  1.55  
Silver 5,000 -0.08  1.60  -0.08  1.85  
Sugar 112,000 0.20  2.37  0.11  1.64  
Tin 5 0.09  1.75  -0.16  0.86  
Unleaded 42,000 -0.37  2.91  -0.29  2.98  
Zinc 25 -0.22  1.87  0.15  1.66  

 
This table reports summary statistics of daily rates of return and contract’s multipliers of various futures considered 
in our analysis.  
 

 

Table 2. Out-of-sample performance for various strategies 

 Non-robust in 𝜃𝜃2 𝜃𝜃2 = 5 × 10−8 
 Mean 

return 
SD of 
returns 

Gross 
SR 

Net 
SR 

Mean  
return 

SD of 
returns 

Gross 
SR 

Net 
SR 

Non-robust in 𝜃𝜃1 8.90 × 106 1.96 × 108 0.73 0.14 4.40 × 106 9.46 × 107 0.75 0.48 
𝜃𝜃1 = 10−10 8.29 × 106 1.78 × 108 0.75 0.17 4.27 × 106 8.94 × 107 0.77 0.50 
𝜃𝜃1 = 10−9 5.32 × 106 9.56 × 107 0.90 0.39 3.37 × 106 6.07 × 107 0.90 0.61 

 𝜃𝜃2 = 5 × 10−7 𝜃𝜃2 = 5 × 10−6 
 Mean 

return 
SD of 
returns 

Gross 
SR 

Net 
SR 

Mean  
return 

SD of 
returns 

Gross 
SR 

Net 
SR 

Non-robust in 𝜃𝜃1 2.51 × 106 4.58 × 107 0.89 0.71 1.27 × 106 1.76 × 107 1.16 1.05 
𝜃𝜃1 = 10−10 2.47 × 106 4.42 × 107 0.90 0.73 1.26 × 106 1.73 × 107 1.17 1.06 
𝜃𝜃1 = 10−9 2.18 × 106 3.40 × 107 1.04 0.85 1.19 × 106 1.50 × 107 1.28 1.16 

 

This table reports out-of-sample Sharpe ratios (SR) for the non-robust strategy and various robust strategies before 
and after transaction costs, as well as means and standard deviations (SD) of daily dollar returns of these strategies 
before transaction costs. Non-robust in 1θ  and 2θ  correspond to the strategies with no robustness in returns ( tu ) and 

return-predicting factors ( tv ), respectively. The out-of-sample period is from July 1, 1996 to December 31, 2015.  
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Table 3. Out-of-sample performance for various robust strategies with different transaction costs 
and predictor variability 

Panel A:   Performance for various strategies with various transaction costs 
 𝜆𝜆 = 5 × 10−8 

（Low costs） 
𝜆𝜆 = 5 × 10−7 

（Medium costs） 
𝜆𝜆 = 5 × 10−6 
（High costs） 

 MR Gross  
SR TC  Net 

SR MR Gross  
SR TC  Net 

SR MR  Gross  
SR TC  Net 

SR 
Non-robust in 

𝜃𝜃2 1 1.52 1 1.20 1 0.75 1 0.17 1 0.49 1 -0.43 

𝜃𝜃2 = 5 × 10−8 0.77 1.65 0.45 1.45 0.51 0.77 0.23 0.50 0.30 0.44 0.14 0.06 
𝜃𝜃2 = 5 × 10−7 0.56 1.84 0.19 1.71 0.30 0.90 0.08 0.73 0.13 0.48 0.04 0.23 
𝜃𝜃2 = 5 × 10−6 0.35 2.18 0.07 2.09 0.15 1.17 0.02 1.06 0.06 0.69 0.01 0.51 

Panel B:   Performance for various strategies with various levels of factor variability 
 1 × Σ𝑣𝑣  

(Low variability) 
2 × Σ𝑣𝑣  

 (Medium variability) 
4 × Σ𝑣𝑣  

(High variability) 

 MR  Gross  
SR TC  Net 

SR MR  Gross  
SR TC  Net 

SR MR  Gross  
SR TC  Net 

SR 
Non-robust in 

𝜃𝜃2 1 0.75 1 0.17 1 0.75 1 0.17 1 0.75 1 0.17 

𝜃𝜃2 = 5 × 10−8 0.51 0.77 0.23 0.50 0.43 0.76 0.16 0.54 0.35 0.76 0.11 0.57 
𝜃𝜃2 = 5 × 10−7 0.30 0.90 0.08 0.73 0.23 0.92 0.05 0.77 0.19 0.94 0.03 0.82 
𝜃𝜃2 = 5 × 10−6 0.15 1.17 0.02 1.06 0.12 1.24 0.01 1.14 0.09 1.322 0.01 1.23 
 
This table reports out-of-sample Sharpe ratios (SR), means of daily dollar returns (MR), and means of daily dollar 
transaction costs (TC) for various robust strategies with different levels of transaction costs and predictor variability. 
MR and TC of each strategy are expressed as the percentage of the corresponding values for the strategy with no 
robustness in 2θ . For all robust strategies considered, 10

1
10θ −= . We consider three different levels of transaction 

costs: low costs ( 85 10λ −= × ), medium costs ( 75 10λ −= × ), and high costs ( 65 10λ −= × ), where 75 10λ −= ×  is the 
base-case transaction cost in our analysis. We consider three levels of predictor variability: 1 v× Σ , 2 v× Σ , and 
4 v× Σ . The out-of-sample period is from July 1, 1996 to December 31, 2015.  
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Table 4. Out-of-sample performance of non-robust, scaled non-robust, and robust strategies 

 Mean return SD of returns Gross SR Net SR 
Non-robust 8.53 × 106 1.98 × 108 0.70 0.09 

Scaled non-roubst 1.81 × 106 4.77 × 107 0.61 0.33 
Robust 2.36 × 106 4.42 × 107 0.86 0.68 

 
This table reports out-of-sample Sharpe ratios (SR) for the non-robust strategy, scaled non-robust strategy, and base-
case robust strategy before and after transaction costs, as well as means and standard deviations (SD) of daily dollar 
returns of these strategies before transaction costs. The out-of-sample period is from January 1, 1997 to December 
31, 2015.  

 

 


	1.  Introduction
	2. Model and optimal trading strategy
	2.1. The model with no ambiguity
	2.2. The model in the presence of ambiguity aversion
	2.3. The optimal trading strategy with ambiguity aversion

	3. Properties of the optimal trading strategy with ambiguity aversion
	3.1. The basic trading principles
	3.2. The additional trading principle with ambiguity aversion

	4. Performance of the robust trading strategy: An empirical investigation
	4.1. The data
	4.2. Model estimation
	4.3. Performance of robust trading strategy
	4.4. Impacts of transaction costs and predictor variability on performance
	4.5. Robust versus scaled non-robust strategies

	5. Conclusion
	References

